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We identified factors leading to hippocampal and basal ganglia recruitment during categorization learning.
Subjects alternated between blocks of a standard trial and error category learning task and a subjective
judgment task. In the subjective judgments task subjects categorized the stimulus and then instead of
receiving feedback they indicated the basis of their response using 4 options: Remember: Conscious episodic
memory of previous trials. Know-Automatic: Automatic, rapid response accompanied by conscious awareness
of category membership. Know-Intuition: A “gut feeling” without fully conscious knowledge of category
membership. Guess: Guessing. In addition, new stimuli were introduced throughout the experiment to
examine effects of novelty. Categorization overall recruited both the basal ganglia and posterior hippocampus.
However, basal ganglia activity was found during Know judgments (both Automatic and Intuition), whereas
posterior hippocampus activity was found during Remember judgments. Granger causality mapping
indicated interactions between the basal ganglia and hippocampus, with the putamen exerting directed
influence on the posterior hippocampus, which in turn exerted directed influence on the posterior caudate
nucleus. We also found a region of anterior hippocampus that showed decreased activity relative to baseline
during categorization overall, and showed a strong novelty effect. Our results indicate that subjective
measures may be effective in dissociating basal ganglia from hippocampal dependent learning, and that the
basal ganglia are involved in both conscious and unconscious learning. They also indicate a dissociation within
the hippocampus, in which the anterior regions are sensitive to novelty, and the posterior regions are
involved in memory based categorization learning.

© 2011 Elsevier Inc. All rights reserved.

Introduction

recruit the basal ganglia). Second, we manipulated stimulus novelty
and found that it dissociated the roles of anterior and posterior

Humans are endowed with a wide variety of learning and memory
systems that allow us to adapt to our environment. One system
underlies procedural learning and includes the basal ganglia; another
underlies declarative memory and includes the hippocampus. Both
systems are often recruited during categorization tasks, in which
subjects learn to associate stimuli with responses indicating category
membership via trial and error. The present study is aimed at further
characterizing and dissociating the roles played by the basal ganglia
and hippocampus in categorization learning. First, we used subjects'
subjective judgments to dissociate trials performed on the basis of
memory (and found to recruit the hippocampus), from trials
performed in a subjectively automatic or intuitive way (found to
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hippocampus in category learning.
The basal ganglia in categorization learning

There is broad convergent evidence that the basal ganglia are
important for categorization learning (see Seger and Miller, 2010;
Shohamy et al., 2008; Ashby and O'Brien, 2005 for reviews). Although
the basal ganglia are recruited during a wide variety of categorization
tasks, they are particularly important for feedback-based categoriza-
tion, in which subjects learn via trial and error. Basal ganglia
activation during trial and error categorization learning is universally
reported in functional imaging studies (Poldrack and Foerde, 2008;
Seger, 2008; Nomura et al., 2007). Learning is impaired in patients
with basal ganglia damage due to Parkinson and Huntington diseases
(Knowlton et al., 1996a,b; Shohamy et al., 2004; Filoteo et al., 2007).
Trial and error categorization tasks are similar to many commonly
used tasks in the rodent and nonhuman primate literatures (such as
arbitrary visuomotor learning and instrumental conditioning): in all
subjects perceive a stimulus, make a contingent behavioral response,
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and finally receive feedback or reward (Seger, 2009). Lesion and
electrophysiological research with these species provide additional
evidence that the basal ganglia are critical for trial and error
categorization learning.

Recent research has focused on the question of what specific role or
roles the basal ganglia play in categorization learning. We have argued
that different corticostriatal loops (interacting networks passing
through particular cortical and basal ganglia regions) subserve different
processes within categorization (Seger et al, 2010). Our views are
based on the established function of the basal ganglia in modulating
cortical processing to enable selection of responses, behaviors, and
strategies appropriate to the current behavioral context (Seger, 2008;
Frank, 2005; Gurney et al., 2004). Categorization requires first
evaluating the stimulus and mapping it to the appropriate category;
we argue that the visual loop passing through the posterior caudate and
projecting to the pre-SMA is important for this process (Ashby et al.,
1998). Subsequently, it is necessary to select the appropriate motor
response indicating category membership; this function recruits the
motor loop passing through the posterior putamen. Finally, categori-
zation learning requires evaluating the feedback received and updating
stimulus-category representations; these processes recruit the execu-
tive and motivational loops passing through the anterior caudate and
ventral striatum, respectively.

The hippocampus in categorization learning

The evidence for the involvement of the hippocampus in
categorization learning is mixed. Early research using the most
studied categorization task, the probabilistic classification or “weather
prediction” task, found that amnesics showed preserved early
learning (Knowlton et al., 1994), indicating independence from the
hippocampus. However, later research found amnesics were impaired
in the task (Hopkins et al., 2004). The first functional imaging study of
probabilistic classification found decreased anterior hippocampal
activity across blocks of training (Poldrack et al., 1999). A follow-up
study found a more complex pattern of results: an increase in anterior
hippocampal activity at the beginning of training which rapidly
dropped to below baseline levels (Poldrack et al., 2001; Little et al.,
2006). Foerde and colleagues (Foerde et al., 2006) found that under
single task learning conditions anterior hippocampal activity corre-
lated with measures of learning, whereas under dual task conditions
this relationship did not hold. Studies with categorization tasks other
than the probabilistic classification task, including the information
integration task (Cincotta and Seger, 2007) and trial and error
prototype learning tasks (Zeithamova et al., 2008; Little et al., 2006)
have reported hippocampal activity, but in relatively posterior
regions. These patterns of results indicate that the anterior and
posterior hippocampus may be playing different roles in categoriza-
tion learning.

The transient anterior hippocampal activation at the beginning of
probabilistic classification learning implies a role in initial processing
of each novel stimulus. This is consistent with recent research finding
anterior hippocampal sensitivity to stimulus novelty (Daselaar et al.,
2006; Strange et al., 1999; Blackford et al., 2010; Wittmann et al.,
2007; Kohler et al., 2005; Poppenk et al., 2010). Meeter and colleagues
(Meeter et al., 2008) argued that the hippocampus may be required to
encoding the stimulus and setting up representations that may then
be accessed by other neural systems.

Positive posterior hippocampal activation in some tasks indicates
that this region may be recruited to aid task dependent performance.
Studies that found positive posterior hippocampal activity typically
used larger sets of visually complex or variable stimuli, and had
stimulus-category relationships that were deterministic rather than
probabilistic. Both factors may make using a declarative memory
strategy more useful and thus increase reliance on memory strategies.

We designed our task in accordance with these results to
maximize the chance that we would modulate activity in both
anterior and posterior hippocampal regions. We used a large study set
of visually complex stimuli that were deterministically assigned to
category, thus maximizing the utility of memory-based strategies. We
also manipulated stimulus novelty separately from training block by
introducing novel stimuli across the entire experiment. This avoids
the confound between stimulus novelty and early overall learning
present in previous studies. On the basis of previous studies, we
predicted that the anterior hippocampus would be more sensitive to
the novelty manipulation, whereas the posterior hippocampus would
be recruited across the categorization learning process.

Interactions between basal ganglia, hippocampus, and
dopaminergic systems

A number of patterns of interaction between the basal ganglia and
hippocampal systems have been observed across species and tasks. In
some tasks, including the probabilistic categorization in humans, and
place versus response (or “habit”) learning in rodents the relationship
is competitive: basal ganglia increases are paired with hippocampal
decreases, and vice versa (Lee et al., 2008). In other situations, notably
spatial learning, basal ganglia and hippocampus are recruited in
parallel (Doeller et al., 2008). It is unknown whether interactions
between basal ganglia and hippocampus are direct, or mediated by
other neural systems. There is some evidence that the prefrontal
cortex can mediate the balance during probabilistic classification
learning (Poldrack and Rodriguez, 2004), and that emotional arousal
can mediate, via the amygdala, habit versus place learning (Wingard
and Packard, 2008).

The basal ganglia and hippocampus are both targets of dopamine
projections from the midbrain (ventral tegmental area and substantia
nigra). The dopamine signal reflects the valence of the feedback
received, and the degree to which the feedback was or was not
expected (often referred to as prediction error; Hollerman and
Schultz, 1998). Dopamine is crucial for synaptic plasticity within the
striatum; long term potentiation only occurs in the presence of
dopamine (Reynolds and Wickens, 2002). In the hippocampus, long
term potentiation can occur without dopaminergic input, but is
increased when dopamine is present (Diizel et al., 2010; Bethus et al.,
2010). Dopamine plays an important role in ensuring that memories
are motivationally relevant and adaptive for the organism (Shohamy
and Adcock, 2010).

We used Granger causality mapping (GCM) to explore interactions
between basal ganglia, hippocampus, and the dopaminergic midbrain.
GCM identifies directed influences across time to and from neural “seed”
regions. We predicted that directed influences within the basal ganglia
would proceed from putamen, to anterior caudate, to posterior caudate,
as we have found in previous categorization studies (Lopez-Paniagua
and Seger, (in press); Seger et al., 2010). We also predicted that the
dopaminergic midbrain would exert directed influence on both the
hippocampus and basal ganglia, in accordance with the known anatomy
of dopaminergic projections to these regions. We did not have a priori
hypotheses as to how the hippocampus and basal ganglia would interact
due to the paucity of knowledge about anatomical and functional
connections between these regions.

Subjective measures in the study of memory

Subjective measures have been used widely in the memory
literature to dissociate forms of memory. One approach assesses
whether subjects are subjectively aware (explicit) or not aware
(implicit) of what they have learned (Seger, 1994). A more recently
developed subjective judgment task is the Remember-Know task,
which can be used to dissociate the contributions of full recollection
from those of familiarity in recognition memory (Gardiner et al.,
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2002). Subjects make a Remember response if they have a full
episodic memory of the stimulus including features such as the time
and place at which they first encountered it. A Know response is used
when subjects believe that they have encountered the stimulus
before, but their memory is not accompanied by any episodic details.
Within the medial temporal lobe, recollection and familiarity
generally recruit the hippocampus and parahippocampal cortex
(particularly perirhinal cortex), respectively (Eichenbaum et al.,
2007; Diana et al., 2007). There is controversy over whether
familiarity is fully dissociable from recollection, or if it might just
reflect a weaker form of memory (Kirwan et al., 2008). However, it
widely agreed that Remember responses identify strong episodic
memories.

We adapted the Remember-Know task to the category learning
domain in order to identify on a trial by trial basis when subjects were
relying on episodic memory and when they were making their
response based on some other information. During pilot research
subjects indicated that they were able to use the Remember response
to indicate trials on which they responded based on episodic memory.
However, subjects indicated that the Know response was difficult to
use because they actually experienced two subjectively different non-
memory based states. One state was described as performing
automatically, knowing the response without thinking about it. The
other was described as having a sense of category response via
intuition or a gut feeling. We examined these two states separately in
our study, and referred to them as “Know-Automatic” and “Know-
Intuition”; full descriptions of each are given in the appendix. Within
our study, we predicted that Remember trials would recruit the
hippocampus, and Know trials would recruit the basal ganglia. Within
Know trials, if the basal ganglia are limited to relatively implicit forms
of learning (in the sense of not being fully verbalizable; see the
Discussion for a more detailed treatment of this issue), than basal
ganglia recruitment should be greatest for Know-Intuition trials.
Alternatively, if the basal ganglia are recruited across both implicit
and explicit learning, then they may be recruited by both Know-
Automatic and Know-Intuition.

Overview of the current study

We taught subjects to categorize complex abstract visual stimuli
(fractal designs) into two separate categories. All stimuli were
deterministically assigned to category. Assignment was arbitrary:
that is, there was no pattern or rule that could be used to categorize
stimuli and the category membership for each stimulus must be
learned independently. Across the blocks new stimuli were contin-
ually added to the learning set so that within each block, stimuli
varied in the numbers of times they had been previously encountered.
This allowed us to separate processes associated with processing
novel stimuli from those associated with overall categorization
learning. Subjects alternated performing blocks of a standard trial
and error categorization learning task and a subjective judgment task.
In the category learning task, they viewed a single stimulus, pressed a
button to indicate its category membership, then received feedback.
In the subjective judgment task, instead of receiving feedback subjects
were prompted to report the subjective basis of their response using
one of four options: Remember, Know-Automatic, Know-Intuition,
and Guess. Finally, we examined interactions between basal ganglia,
hippocampus, and dopaminergic midbrain using Granger causality
mapping across all trials.

Materials and methods
Subjects

Eleven subjects were recruited from the University of Colorado
School of Medicine, Denver community (Aurora, CO). All subjects

were healthy, right-handed adults (7 males, 4 females) with an
average age of 25.5years (range: 18-31). Subjects were fluent
speakers of English, and were screened for a history of neurological
and psychiatric disorders, use of psychoactive substances, and
contraindications to MRI (i.e., metallic implants and claustrophobia).
Each subject participated in one scanning session, completing the
procedure described below. Functional data from one additional
participant was excluded from analyses due to a high rate of missed
trials (over 40%) combined with below chance accuracy on the
completed trials.

Categorization tasks

Two tasks were utilized: a categorization task, and a subjective
judgment task, which alternated in blocks of 28 trials. There were 6
blocks of each task, divided evenly across 3 separate scans. The
categorization task was similar in structure to ones used in previous
studies in our lab (Seger and Cincotta, 2005). A “weather prediction”
cover story was used, in which subjects were informed that they
should learn which stimuli predict rain and which predict sun. Each
trial consisted of participants being presented with a single arbitrary
visual stimulus and making a button press to indicate which category
the stimulus belonged to. Following each response, participants were
given feedback as to whether their response was correct or incorrect.
During scanning, responses were made via right and left handed
response boxes; “sun” was indicated via a left index finger button
press, and “rain” via a right index finger button press.

The subjective judgment task was identical to the categorization
task with one notable exception. Rather than receiving feedback as to
whether their choice was correct or incorrect, subjects were asked to
make a judgment as to the process used to categorize the previous
stimulus as either rain or sun. To do so, participants used one of four
types of responses: Remember, Know-Automatic, Know-Intuition, or
Guess. Although we refer to these responses by these names here,
subjects learned to refer to each response with a neutral letter: B
(Remember), A (Know-Automatic), C (Know-Intuition), and D (Guess).
These neutral letter names were used because previous research has
shown that subjects vary in their preexisting ideas of what is meant by
“Remember” and “Know” and we wanted to avoid biasing that might be
entailed by using these words as a shorthand (McCabe and Geraci,
2009). A Guess response was included because previous research has
shown that without a Guess response, the Know response is often used
by subjects to indicate low memory confidence (Eldridge et al., 2002;
Gardiner et al., 2002).

Our Remember instructions were based on earlier research using
the Remember-Know task in recognition memory, following the
instructions initially developed by Rajaram (1993), and utilized by
McCabe and Geraci (2009). In these instructions, subjects are given a
list of several dimensions that can be used as a basis for a remember
response, including “something personal from the time you studied
it”, “something that happened in the room (noise)”, and are also given
examples of real world situations in which they might have
experienced recollective or familiarity based memory We used similar
examples for our Remember instructions (see the Appendix). We
developed our instructions for the two Know responses based on
extensive piloting and interviews with subjects. As for Remember
responses, we gave subjects several dimensions that might corre-
spond to each type of Know response, and included real world
examples of when they might have experienced a similar form of
learning.

Subjects were given extensive description of each type of response
(full instructions are included in the Appendix). They requested to
read the task instructions at home before the experimental session. At
the beginning of the session, they read the instructions again and
discussed the meaning of each of the options with the experimenter.
Subjects then performed 30-50 practice trials under the supervision
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of the experimenter; the stimuli used in the practice trials were
different from those used during the scanning session. During
scanning, judgments A through D were made using the following
fingers on the left and right hand response boxes: A by the left middle
finger, B by the left index finger, C by the right index finger, and D by
the right middle finger so that there was a left to right spatially
compatible mapping of letters onto fingers.

Stimuli were fractal images (Seattle Fractals Digital Art, Seattle,
WA) created using Tearazon v29 fractal drawing software (Stephen
Ferguson, Houston, TX). The 24 images selected for use in the study
were chosen on the basis of being distinctive patterns without easily
verbalized patterns or features in common across categories. The
relationship between each stimulus and the two possible responses
was deterministic: half of the stimuli were always associated with
“rain” and half were always associated with “sun”. In the initial block
of the study, subjects were exposed to 6 stimuli. After 30 (£ 8) trials,
one stimulus was removed and replaced with a novel one. The same
replacement procedure was carried out throughout the entire length
of the task in order to continually expose subjects to novel stimuli and
to ensure that stimuli with each block varied in number of times they
were previously seen. Analyses examining effects of stimulus
repetition number and novelty were limited to blocks 2-5; block 1
was excluded because all of the stimuli were being presented for the
first through fourth time, and including this block would result in a
confound between stimulus repetition number and overall amount of
training on the categorization task. Similarly, stimuli appearing for
more than 8 repetitions could not be evenly distributed across blocks
(none were present in block 2, and few in blocks 3 and 4), so these
stimuli were also excluded so as to avoid a confound stimulus
repetition and overall amount of training. One subject was excluded
from the novelty analysis due to technical problems resulting in his
receiving a different distribution of repetition numbers across blocks.

Within each block, trials were arranged pseudo-randomly with the
constraint that stimuli were never repeated in immediate succession.
The trial length varied depending on a number of factors. In the
categorization portion of the task, stimuli were presented for
1500 ms, during which subjects were required to make their response
indicating category membership. Following the response, there was a
brief delay lasting 250 ms, before subjects received trial-specific
feedback presented for 1250 ms. After feedback, subjects were
presented with a fixation cross which signaled the beginning of a
new trial. This inter-trial interval was jittered. The values for the jitter
were 1500 ms, 3000 ms, 4500 ms, and 6000 s, even multiple of the TR.
These values were randomly sampled from a geometric distribution
using Matlab (The MathWorks Inc, Natick, MA), i.e., 50% of the trials
1500 ms inter-trial interval, 25% of the trials had 3000 ms inter-trial
interval, 12.5% of the trials had 4500 ms inter-trial interval, and 12.5%
of the trials had 6000 ms inter-trial interval. In the response judgment
portion of the task, trial length and timing of individual events was
similar to that of the categorization portion. However, instead of the
feedback screen, subject were presented with a screen that allowed
them to choose either a type A, B, C or D response, which lasted
2750 ms. Following this response screen, subjects were once again
presented with a jittered inter-trial fixation screen.

fMRI image acquisition

Images were obtained on a research-dedicated 3.0 T whole-body
MRI scanner (GE Healthcare, Milwaukee, WI) at the Brain Imaging
Center at the University of Colorado Denver (Aurora, CO). The scanner
was equipped with an 8-channel, high-resolution phased array head
coil using GE's Array Spatial Sensitivity Encoding Technique (ASSET)
software. Anatomical images were collected using a T1-weighted
SPGR sequence (minimal TR; TE, 3.95 ms; TI, 950 ms; FA, 10°; FOV,
220-mm; 256 * 256 coronal matrix; 166 1.2-mm slices). The structural
images were used to verify proper slice selection and to determine the

sites of functional activation (i.e., voxels that were found to be
significantly activated during the functional scan were overlaid on the
high-resolution structural images). Functional images were recon-
structed from 26 axial oblique slices obtained using a T2*-weighted
EPI-Gradient-Recalled Echo sequence (TR, 1500 ms; TE, 30 ms; FA,
64°; FOV, 220-mm; 64 * 64 matrix; 4.0-mm slices; no inter-slice gap),
in order to measure BOLD signal change. Additionally, the first five
volumes, recorded before longitudinal magnetization reached a
steady state, were discarded.

Visual stimuli were presented to subjects using a magnet-compatible
projector that projects visual images onto a mirror attached to the RF
head coil. A computer running E-Prime 2.0 experiment software
(Psychology Software Tools Inc., Pittsburg, PA) was used to control
stimulus presentation and interface with two two-button magnet
compatible response boxes placed one in each hand. Earplugs and
headphones were provided to protect the subjects' hearing. Head
movement was minimized using small foam pads placed on each side of
the head inside the RF head coil.

Image preprocessing

Image analysis was performed using BrainVoyager QX 2.1 (Brain
Innovation, Maastricht, The Netherlands). Functional data was first
subjected to preprocessing, consisting of 1) three dimensional motion
correction using trilinear interpolation, 2) slice scan time correction
using cubic spline interpolation, 3) temporal data filtering with a
high-pass filter of 3 cycles in the time course and 4) linear trend
removal. Each subject's high-resolution anatomical image was
normalized to the Talairach and Tournoux (1988) brain template.
The normalization process consisted of two steps: an initial rigid body
translation into the AC-PC plane, followed by an elastic deformation
into the standard space performed on 12 individual sub-volumes. The
resulting set of transformations was applied to the subject's functional
image volumes to form volume time course representations to be
used in subsequent statistical analyses. Finally, the volume time
course representations were spatially smoothed using a Gaussian
kernel, full-width at half maximum (FWHM) of 6.0 mm.

Whole brain analyses

Whole brain analyses were performed using the general linear
model (GLM) implemented in Brain Voyager. The epochs for each
condition were convolved with a prototypical hemodynamic function.
Conditions were then compared by running the GLM using separate
subject predictors, which treated subjects as a random effect. In order
to increase the probability of identifying functionally significant
clusters of activation while controlling for the rate of false-positives,
one of two correction methods was used. Our primary method was
the False Discovery Rate (FDR) method with a threshold of g<.05 was
used (Genovese et al., 2002). This approach is most suitable for
controlling the overall level of false positives across the entire data set
without making any assumptions about particular features of the data
set, such as the smoothness of the data (Bennett et al., 2009). The
other is the cluster level method (Forman et al., 1995) extended to 3D
maps (Goebel et al.,, 2006) and implemented in the Brain Voyager
Cluster Threshold plug-in. The minimum voxel cluster size was
determined for each statistical map using Monte Carlo simulations
with 1000 iterations, with an alpha threshold of .05. To effectively
control for false positives, this method requires that data smoothness
be calculated separately for each analysis; the final cluster size based
on these estimates can vary widely from analysis to analysis, and can
lead to type II errors when the cluster size is large. Given the
limitations on the cluster size threshold approach, we deemed it more
suitable for analyses for which we had strong a priori hypotheses
about the neural systems that should be recruited; specifically, the
hippocampus for Remember judgments and the basal ganglia for
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Know judgments. The particular correction method used is indicated
for each analysis in the figures and table.

Two whole brain analyses were performed. The first analysis
broke trials into conditions on the basis of the task was performed
(Standard Categorization: “Cat” and categorization followed by
subjective judgments “Judge”) and whether the subject correctly
categorized the stimulus or not (“Corr” and “Inc”, respectively).
This resulted in four explicitly defined conditions: Cat-Corr, Cat-Inc,
Judge-Corr, and Judge-Inc. In addition, an implicit baseline
condition was defined as the mean of all remaining time points.
Epochs were defined as the first two image volumes acquired
following the presentation of the stimulus (TR= 1500 ms; epoch
length =2TR =3 s); this epoch length included the entire time for
stimulus presentation and category response in both Categorization
and Judgment trials. However, the feedback and judgment parts of
the trial followed so soon afterwards that it is not possible to state
with certainty that only initial stimulus-response processes were
reflected in the measures of neural activity.

The second whole brain analysis was limited to judgment trials
and examined the four judgment types. This analyses included four
conditions: Remember, Know-Automatic, Know-Intuition, and Guess,
in addition to the implicit baseline. Epochs for this analysis started at
the time of stimulus presentation and extended across a total of 4 TRs
(6 's), which encompassed the entire amount of time allowed for all
parts of the trial. We performed a follow-up analysis incorporating
only correct trials to control for the possibility that any differences
between judgment types were due to differences in proportion of
correct trials. There were very few correct Guess trials, so they were
excluded from this analysis (mean of 4.2, 1.4, and 1.2 correct Guess
trials per subject in runs 1-3, respectively). The overall pattern of
results did not differ qualitatively from the analysis including both
correct and incorrect trials; however, some of the differences did not
reach the set statistical threshold, most likely due to lower power that
resulted from the smaller number of trials.

Anatomical ROI analyses of the hippocampus

In order to avoid problems with circular analysis that could result
from using functionally based ROIs from the whole brain analyses as
the bases of our novelty comparisons (Kriegeskorte et al., 2009), we
instead identified regions of the hippocampus anatomically. Four ROIs
were identified, from the anterior to posterior axis of the hippocam-
pus bilaterally (8 ROIs total); they are illustrated in the right panel of
Fig. 7 and referred to as the Anterior, Mid-Anterior, Mid-Posterior, and
Posterior ROIs. Statistical tests within these ROIs were performed
using the Brain Voyager ROI GLM tool. All contrasts were calculated as
within subject random effects analyses, controlling for between
subject variability, and subjected to an alpha value of p<.05.

Granger causality mapping

Granger causality mapping (GCM) was used to explore effective
connectivity between the striatum and other brain regions. This study
applied Roebroeck and colleagues' (2005) procedure, as implemented
within BrainVoyager, for creating causality maps that provide a
measure of directed influence. Reference (or “seed”) regions were
defined on the basis of the contrast comparing correctly categorized
trials with baseline; they included right and left regions within the
basal ganglia (putamen, head of the caudate, and body of the caudate)
and the hippocampus (both anterior and posterior). We also included
a seed region from the dopaminergic brainstem (general region
encompassing the VTA/SNr) given the theoretical interest in how
dopaminergic systems modulate both basal ganglia and hippocampus
(Shohamy and Wagner, 2008; Adcock et al., 2006).

Target regions were defined as any voxel not included in the
reference region (y). Influence measures were then calculated from

the reference to target region (FX—Y), target to reference region
(FY—X) and total linear dependence between the reference and
target regions (FX,Y) by repeatedly pairing the time-course maps of
each voxel in these regions. Time course data was sampled from all
trials in every condition across all scans. The subsequent GCM analysis
was performed using preprocessed data, which included spatial
smoothing. Directed influences to and from the reference region were
calculated by subtracting the influence of the target to reference
region from the influence from the reference to the target region
(FX—Y —FY—X) for every voxel to calculate a difference (dGCM).
Thus, effective connectivity was described as: dGCM=FX—-Y —
FY—X (see Roebroeck et al., 2005 for details). A positive difference
value indicates FX—Y (reference—volume) influence, whereas
negative difference values depict FY—X (volume—reference) influ-
ence. That is, activity in region X is said to cause activity in region Y if
the past activity in X can be used to statistically predict activity in Y
more accurately than merely using the past patterns of activation in
region Y. Effective connectivity maps were computed by first creating
individual maps for each VOI for each subject, then comparing
activation across maps using a voxelwise t-test examining whether
activity was significantly different from zero; p<.05, cluster threshold
of 20.

We confirmed each pattern of directed influence by using seeds in
both regions: for example the directed influence from putamen to
anterior caudate was detected both as an influence from the putamen
seed region to the anterior caudate, and an influence onto the anterior
caudate seed region from the putamen. In addition, we required that
the pattern be present in both the right and the left hemispheres. It
should be noted that GCM has some limitations. One is that it assumes
that the hemodynamic response has the same shape and latency in all
regions (David et al., 2008; Deshpande et al., 2009); it is unknown
whether this assumption holds across all the regions we have
examined.

Results
Behavioral results

Learning across scans and stimulus repetitions

As shown in Fig. 1 (top), mean accuracy increased across scans of the
study; each scan included 2 categorization and 2 judgment blocks. A
2 x 3 within subjects ANOVA with factors of condition (Categorization
vs. Judgment) and Scan (1-3) revealed a main effect of scan, F(2,18) =
29.49, p<.001, and a main effect of condition, F(2,18) = 17.40, p=.002,
but no interaction. The main effect of condition is likely due to two
factors: judgment half-blocks always followed categorization half-
blocks, and new stimuli were always introduced and repeated for the
first time in a categorization block.

As shown in Fig. 1 (bottom), subjects were at chance at the first
presentation of each stimulus, and accuracy rose across subsequent
presentations, with most of the increase in accuracy completed by trial
7. A one-way within subjects ANOVA indicated a main effect of stimulus
repetition number, F (23,192) =2.7, p<.001.

Judgment type distribution

The distribution of the four judgment types across scans is shown in
Fig. 2 (top). A 4x 3 ANOVA with factors of Judgment Type (Remember,
Know-Automatic, Know-Intuition, and Guess) and Scan (1-3) showed a
main effect of judgment type F(1.68,15.08)=10.77, p=.002, and a
significant interaction between scan and judgment type, F(2.14,19.24) =
6.57, p=.006. Maluchy's test indicated that the assumption of sphericity
had been violated for response type (chi-square =15.54) and the scan
by response type interaction (chi-square=44.00), so degrees of
freedom were adjusted using Greenhouse-Geisser estimates of sphe-
ricity (epsilon=.558 and .356, respectively). Post hoc tests using a
Bonferroni correction revealed that subjects made significantly made
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Fig. 1. Categorization accuracy across blocks and stimulus presentations. (Top) Mean
proportion correct across Scans 1, 2, and 3; Categorization blocks plotted separately from
Judgment blocks. (Bottom) Accuracy as a function of individual stimulus repetitions.

more Know-Automatic, Know-Intuition, and Remember responses
compared to Guess (p=.021,.027, and .003, respectively).

We examined each Judgment type separately to see if its use
changed across scans using one-way repeated measures ANOVA. For
Know-Automatic judgments there was a significant main effect of
Scan, F(2,18)=10.34, p=.001. Post hoc tests confirm that subjects
made more Know-Automatic judgments across time: there was a
significant increase from Scan 1 to Scan 2 (p =.055), and from Scan 1
to Scan 3 (p=.006), but not between Scans 2 and 3. For Know-
Intuition judgments there was a significant main effect of Scan, F
(2,18)=5.83, p=.011, but pairwise comparisons revealed no
significant differences between scans once corrections for multiple
comparisons were applied. There was no significant main effect of
scan for Remember judgments. For Guess judgments there was a
significant main effect of scan, F(1.14,10.29) = 6.97, p =.022. Post hoc
tests with a Bonferroni correction revealed a significant decrease in
Guess responses between Scan 1 and Scan 3 (p =.05). Overall there
were more Know-Automatic responses over time, and fewer Guess
responses, but Remember and Know-Intuition responses did not
change substantially across blocks.

Relation between judgment types and accuracy

Fig. 2 (bottom) shows the accuracy rate associated with each
judgment type. A one-way ANOVA revealed significant effect of
response type F(3,32) =94.29, p<0.001. Tukey's post hoc test showed
that accuracy was higher for Know-Automatic than Remember
(p=0.02), Know-Intuition (p<0.001) or Guess (p<0.001) responses.
Remember responses were significantly more accurate than Guess
responses (p<0.001), but did not significantly differ in accuracy from
Know-Intuition (p=0.09). Finally, there was a trend towards Know-
Intuition being more accurate than Guess responses (p =0.052).

Judgment Distribution Across Scan
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Fig. 2. Top: Proportion of subjective judgment types across scans. Bottom: Accuracy
rates for each subjective judgment type.

Whole brain analyses

Activity during categorization and judgments

We first examined activity during correct categorization (Cat-
Corr>Baseline). This revealed patterns of activity similar to previous
categorization learning studies, confirming that the differences in
design in the present study did not significantly change the recruited
neural systems. Within the basal ganglia (see Fig. 3, middle left), activity
extended across all regions of the striatum, including ventral striatum,
anterior and posterior putamen, and anterior and posterior caudate. As
in previous studies, we identified a region of the medial temporal lobe
that was overall less active during categorization than during baseline;
this region is relatively anterior and closely matches the region
identified in previous categorization studies (Poldrack et al, 1999,
2001; Foerde et al., 2006; Seger and Cincotta, 2006). In addition, a
posterior region of the hippocampus was more active during catego-
rization (see Fig. 3, lower left). Extensive bilateral frontoparietal
networks were also recruited; of particular note these include the
inferior frontal gyrus, lateral premotor cortex, dorsolateral prefrontal
cortex, medial frontal cortex/supplementary motor area, and both
superior and inferior posterior parietal regions (see Fig. 3, top left).

We then examined activity during subjective judgment trials
(Judge-Corr>Baseline), and compared standard categorization to
judgment task (Judge-Corr>Cat-Corr; recall that for both Judge-Corr
and Cat-Corr the epoch was limited to the first 2TRs, 3 s total,
following stimulus onset and did not included the time during which
the subjective judgment was made). The regions recruited during
judgment trials were very similar to the regions recruited in
categorization. As in categorization, there was activity across all
regions of the striatum, posterior hippocampus, and frontoparietal
networks, combined with decreased activity in the anterior hippo-
campus. When directly compared, overall levels of activity were
higher in Judge-Corr than Cat-Corr, but no regions of activity were
exclusive to either the standard categorization or the judgment task.
These analyses confirm that the initial phases of the Judgment task
(viewing the stimulus and making the categorical response) were
similar to the corresponding phases of the Categorization task.
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Hippocampal activations; x =

Remember

Fig. 3. Whole brain analyses indicating activated regions across conditions in the prefrontal and parietal cortexes (top row), basal ganglia (middle row), and hippocampus (bottom
row). The conditions are standard Categorization trials (left column), Know trials (middle column) and Remember trials (right column). The contrasts used for each condition were
Cat-Corr + Cat-Inc>Baseline, Know-Automatic 4+ Know-Intuition>Baseline, and Remember>Baseline, respectively. All contrasts were thresholded and corrected for multiple

comparisons using the false discovery rate at g<.05.

Remember and know activations in basal ganglia and hippocampus

We first examined Remember and Know judgments separately,
focusing on the basal ganglia and hippocampus. These conditions are
compared with activation patterns during Categorization in Fig. 3.
Overall, the hippocampus was associated with Remember trials, and
the basal ganglia with Know trials. Specifically, in Remember trials
(Remember>Baseline), we found bilateral activation of the posterior
hippocampus in addition to deactivation of the anterior hippocampus.
During Know trials (Know-Automatic + Know-Intuition>Baseline),
there was bilateral activity in the head of the caudate. No suprathres-
hold basal ganglia activity was found for Remember trials, or
suprathreshold hippocampal activity in Know trials. The recruitment
patterns for the caudate and both hippocampal regions across all
three judgment types are illustrated in Figs. 4 and 5, respectively.

A direct comparison of Remember and Know trials (Remember>
Know-Automatic + Know-Intuition; Table 1a) revealed greater
activity in the right and left head of the caudate for Know than
Remember trials, consistent with the pattern shown in Fig. 4.
Although activation and deactivation in the posterior and anterior
hippocampi, respectively, was found in Remember> Baseline and not in
Know>Baseline, these differences were not significant in the direct
comparison. As shown in Fig. 5, this may be due to differences in
hippocampal recruitment in the two Know subconditions, with the
larger differences being between Remember and Know-Automatic. To

explore this possibility, we performed pairwise comparisons between
Remember and each of the two Know conditions individually. We
found greater activity in the right anterior hippocampus during
Know-Automatic than Remember trials, consistent with the pattern
illustrated in Fig. 5. There were no other activation differences in the
basal ganglia or hippocampus.

We then examined whether the two types of Know judgments
differed in their neural correlates (Know-Automatic>Know-Intuition;
see Table 1b). There were no differences between the two judgment
types in their recruitment of basal ganglia or hippocampal systems.
We also examined activation during Guess trials (Guess>Baseline).
There were no suprathreshold regions activated, which is likely due to
the small number of Guess trials leading to low statistical power. The
Guess condition was included mainly to reduce the contamination of
the Know-Intuition condition by guess responses, and is not
theoretically important in and of itself.

Remember and know activations in cortex

Cortically, widespread prefrontal and parietal lobe regions were
recruited in both Know and Remember trials. As shown in Fig. 3, top
row, there was a trend towards greater left prefrontal activity in
Remember, and more right prefrontal activity in Know, although the
only region that reached significance in the direct comparison was
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Fig. 4. Recruitment of basal ganglia regions across judgment types. Top: Activated regions overlaid on a coronal slice at y = 8. Bottom: Beta parameter plots indicating activity in the
left and right head of the caudate in the Remember, Know-Automatic, and Know-Intuition conditions for all trials (left) and correct trials only (right).

greater activity in the right inferior prefrontal gyrus/anterior insula
for Know.

There was a laterality difference in parietal lobe activity in the
postcentral gyrus (primary somatosensory cortex), with greater
activity in the Remember>Know and Know-Automatic>Know-Intuition
contrasts in the right hemisphere, and the opposite pattern in the left
hemisphere (greater activity for Know-Intuition>Know-Automatic and
Know>Remember). This pattern is likely to be due to the sensorimotor
demands of the task: both Remember and Know-Automatic responses
were made by pressing buttons on the left hand response box,
whereas Know-Intuition was indicated through a button on the right
hand response box.

Novelty effects in the hippocampus

We examined the effects of stimulus novelty by comparing
activity at the first presentation of each stimulus against later
presentations (Presentation 1>Presentations 5-8) within each of the
8 anatomically defined hippocampal ROIs (see Anatomical ROI
analyses of the hippocampus for details). For purposes of compar-
ison, the Anterior ROI corresponds closely to the anterior region
deactivated in the Correct categorization contrast; the Posterior ROI
is close the posterior region recruited in Correct Categorization and
in Remember. The Mid-Anterior and Mid-Posterior ROIs have
intermediate anatomical positions. The three most anterior ROIs all
showed significant novelty effects. Activity was significantly greater
for the first stimulus presentation in both right and left Anterior ROIs
(t(8)=24, p<.05 and t(8)=3.8, p<.01, respectively), in the left
Mid-Anterior ROI (t(8) =3.8, p<.01), and in both the right and left
Mid-Posterior ROIs (t(8)=4.8, p<.005 and t(8)=3.8, p<.01,
respectively). The effect in the Mid-Anterior ROI did not reach

significance, t (8) =1.6, p=.14. There was no significant effect of
novelty in both Posterior ROIs (left Posterior t<1.0; right Posterior
t(8) =1.2, p>.1). To further explore the nature of the novelty effect,
we calculated beta values for each stimulus repetition within each of
the ROIs. As shown in Fig. 6, the Anterior and Mid-Anterior ROIs
showed strong above baseline activation for the first one or two
presentations of each stimulus, followed by a sharp drop to baseline
or below activity across all subsequent presentations. In contrast, the
Posterior ROI showed no clear novelty effect, but instead a complex
pattern of activity across stimulus repetitions. Notably, there was
higher activity for odd numbered stimulus repetitions in contrast
with even repetitions (Presentations 1, 3, 5, and 7>Presentations 2,
4, 6, and 8; left Posterior t (8)=2.7, p<.05; right Posterior t (8) =
2.87, p<.05). The odd repetitions correspond to the first time each
stimulus appeared in each half block (each stimulus appeared twice
in each standard categorization and judgment half-block; repeti-
tions 1 and 2, and 5 and 6 were always in standard categorization,
and 3, 4, 7, and 8 in judgment). The Mid-Posterior ROI appears to
reflect a combination of the two patterns of activity: a novelty effect
plus stronger activity on odd repetitions. The odd vs. even repetition
effect was significant for the right Mid-Posterior ROI, t (8)=2.6,
p<.05, but not the left p>.1.

Interactions between regions

We used Granger causality mapping to examine interactions
between the primary basal ganglia, hippocampal, cortical, and brain
stem regions involved in the Categorization and subjective judgment
tasks, as described above in Materials and methods. We first
examined directed influences between basal ganglia regions. As
shown in Fig. 7, we found a pattern from putamen to anterior caudate
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Fig. 5. Recruitment of anterior (blue) and posterior (red) hippocampal regions across judgment types. Top: Activated regions overlaid on a coronal and sagittal slices. Bottom: Beta
parameter plots indicating activity in the left and right activated regions in the Remember, Know-Automatic, and Know-Intuition conditions.

to posterior caudate. The putamen seed region received directed
influence only from other regions of the putamen, and exerted
directed influence on the entire caudate. The anterior caudate nucleus
received directed influence from the putamen and adjacent anterior
regions of the caudate, and exerted directed influence on the posterior
caudate. The posterior caudate (seed region in the body of the
caudate) received directed influence from the putamen and anterior
regions of the caudate, and exerted directed influence on more

posterior regions of the caudate (the tail of the caudate). This pattern
replicates previous research from our laboratory (Lopez-Paniagua and
Seger, (in press); Seger et al., 2010).

We then examined how the basal ganglia interacted with the
hippocampus and dopaminergic brain stem. As shown in Fig. 8, the
posterior hippocampus received directed influence from the putamen
and exerted directed influence on the caudate nucleus. There were no
reliable patterns of directed interaction to or from the anterior
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Table 1a
Comparison of Remember and Know.
X y z Size

All Know>Remember
L head caudate -5 7 11 416
L Inferior Frontal/Anterior Insula —25 26 14 539
L Parietal Postcentral Gyrus —39 —33 42 2181
Thalamus 1 —30 4 647
Remember=>All Know
R Parietal Postcentral Gyrus 33 —25 56 5214
R Frontal Precentral Gyrus 15 —-19 57 400
R Superior Temporal Gyrus 63 —26 10 529
L Transverse Temporal Gyrus —39 —34 12 554
B Medial Parietal/Posterior Cingulate 6 —53 8 518
B Medial Parietal/Cingulate —6 —59 30 614
L Cuneus/Occipital Lobe —23 —86 36 358

hippocampal ROIs. Finally, the brain stem exerted directed influence
on both the basal ganglia and the hippocampus, consistent with the
known projections of dopaminergic neurons from this region. The
overall pattern of interactions between regions is summarized in
Fig. 9.

Discussion

The results reveal complex patterns of interaction between
hippocampus and basal ganglia subserving learning, with the basal
ganglia associated with two different kinds of “knowing”, and the
hippocampus with memory based categorization decisions. Further-
more, they indicate that two different regions of the hippocampus are
recruited by different task demands; the anterior hippocampus during
processing of novel stimuli, and a more posterior region associated with
categorization learning overall, memory based trials in particular.

Categorization and the basal ganglia

Overall we found that the basal ganglia were activated during
categorization tasks, consistent with a large number of previous studies.
We have extended that work by finding that the basal ganglia are
particularly associated with subjects reporting that they responded on
the basis of “Knowing” the answer. The basal ganglia were further
associated with two different subjective Knowing states: a subjectively
automatic, rapid, high-confidence state (Know-Automatic) and a
subjectively uncertain intuitive state (Know-Intuition).

Table 1b
Direct comparison of Know-Automatic and Know-Intuition.
X y z Size

Know-Automatic>Know-Intuition
R Parietal Postcentral Gyrus 37 —30 59 6333
R Inferior Parietal Lobule 60 —30 28 773
R Middle Temporal Gyrus 55 —-13 —10 1025
L Middle Temporal Gyrus —55 —60 17 1300
L Inferior Frontal Gyrus —-31 33 —10 768
L Cuneus/Occipital Lobe —11 —84 16 458
Know-Intuition>Know-Automatic
L Parietal Postcentral Gyrus —36 —30 49 18,955
L Thalamus —16 —20 6 1934
R Cerebellum 11 —51 —22 3236
L Parietal Precuneus —19 —66 34 823
L Parietal Superior Parietal Lobule —-25 —58 53 592

Note: Voxelwise threshold p<.01, corrected for multiple comparisons with a cluster
level threshold of p<.05. The cluster level threshold was calculated as described in the
text; for Remember vs. Know the resulting threshold was 11 voxels, and for Know-
Automatic vs. Know-Intuition it was 10 voxels. x, y, z: Tailarach coordinates of center
voxel. size: Size of activated region in voxels.

The role of the basal ganglia in implicit learning

The basal ganglia are often considered to be components within an
implicit learning system. This originated from cognitive neuropsy-
chology research that mapped the explicit vs. implicit learning
dichotomy from cognitive psychology onto the declarative vs.
nondeclarative dichotomy in neuroscience (e.g., Squire and Zola-
Morgan, 1988). It is important to note that the original distinction
between explicit and implicit learning in cognitive psychology was
based on differences in conscious access what was learned: explicit
learning was defined as resulting in fully conscious and usually
verbalizable knowledge, whereas implicit learning was defined as
resulting in unconscious knowledge that was not fully verbalizable
(Seger, 1994). In contrast, the distinction between declarative and
nondeclarative learning was based on neural systems, with declara-
tive knowledge reliant on the medial temporal lobe memory system,
and nondeclarative knowledge reliant on a collection of other neural
systems (Squire and Zola-Morgan, 1988). Despite these qualitatively
different definitions, the mapping of explicit-implicit onto declara-
tive-nondeclarative held up well for a number of years. Across a broad
range of tasks, including perceptual priming (Cermak et al., 1985), eye
blink conditioning (Clark and Squire, 1998), motor skill learning
(Nissen and Bullemer, 1987) and categorization (Knowlton and
Squire, 1993), it was found that variants that required explicit, or
conscious, memory in healthy adults were also impaired in persons
with amnesia due to damage to the hippocampus. In contrast, tasks
that healthy adults could perform implicitly (without full conscious
knowledge) were preserved in amnesia. Some implicit learning tasks
were shown to be dependent on the basal ganglia, including motor
sequence learning (Siegert et al., 2006) and probabilistic classification
learning (Shohamy et al., 2008). However, there are limitations to
equating the two definitions of implicit learning. There have been a
number of recent studies that have found that learning within
nondeclarative systems can sometimes be accessible to conscious-
ness, whereas learning within the declarative memory system is
sometimes not verbalizable (Schendan et al., 2003).

Our results provide additional evidence for the existence of
nondeclarative learning supported by the basal ganglia that is explicit,
in the sense of being accessible to consciousness. We found that the
basal ganglia were associated with Know responses, across both
relatively explicit (Know-Automatic) and implicit (Know-Intuition)
trials. This contributes to the growing body of evidence that the basal
ganglia are not exclusively associated with implicit or unconscious
forms of learning. The basal ganglia are active when performing tasks
in which subjects are aware of what they have learned, such as rule
learning via hypothesis testing (Seger and Cincotta, 2006; Monchi
et al., 2001). Basal ganglia activity is also found in both implicit and
explicit sequence learning (Keele et al., 2003; Destrebecqz et al.,
2005), and persons with basal ganglia disorders are impaired on
explicit as well as implicit sequence learning (Wilkinson et al., 2009).

The basal ganglia and familiarity

We found basal ganglia recruitment for both kinds of Know
judgments. In recognition memory studies, Know judgments are
thought to reflect familiarity based memory processing, in contrast
with full recollection expressed in Remember judgments. This raises
the question of whether the basal ganglia contribute to familiarity-
based memory. It is important to note that recognition tests differ in
several ways from the categorization learning tasks we used here. In
recognition, a subject views the stimulus, and makes a yes/no, or old/
new, memory decision. In categorization, recognition of the stimulus
may well occur but needs to be combined with retrieval and execution
of the categorical response. Therefore, the Know judgments in the
current study may reflect some combination of the familiarity of the
stimulus and/or other factors, possibly including the fluency of the
decision making process and motor response.
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Despite these differences in task demands, there is some research
indicating a role of the basal ganglia in familiarity based recognition
memory. Several studies of patients with basal ganglia impairment
due to Parkinson's disease have found that these patients are impaired
on familiarity across a variety of tasks, including the Remember-Know
task (Davidson et al.,, 2006; Weiermann et al., 2010) but see also
(Edelstyn et al., 2009). Functional imaging studies of recognition
memory have typically focused on medial temporal lobe recruitment
and have deemphasized subcortical activations. However, Montaldi
et al. (2006) reported an association between increased caudate
activity and reported levels of familiarity.

Categorization, memory, and novelty processing in the hippocampus
We found a dissociation between the anterior and posterior

regions of the hippocampus during category learning. The anterior
region was overall reduced in activity during categorization, partic-

ularly during Remember trials, and was primarily affected by stimulus
novelty. This region corresponds well to the region reported as being
deactivated in previous category learning studies (Poldrack et al.,
1999, 2001; Seger and Cincotta, 2006).

We also found a posterior hippocampal region that was active
overall during categorization, and was activated during Remember
trials. The location of this region matches that found for Remember
trials in many recognition memory studies using pictoral information
(Uncapher and Rugg, 2005; Fenker et al., 2005; Slotnick, 2009;
Montaldi et al., 2006). Our results broaden the conditions in which
Remember judgments are associated with posterior hippocampal
recruitment from relatively simple recognition tasks, to more
complex uses of memory required in the categorization tasks. Our
finding that subjects can use memory based strategies to succeed at
learning categorization tasks is consistent with the finding that
Parkinson's patients recruit medial temporal lobe regions when
learning to categorize (Moody et al., 2004), and have implications
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Fig. 7. Directed influence between basal ganglia seed regions.

for understanding the development of compensatory strategies in
memory or learning disorders.

In the memory literature, two theories have been recently
proposed characterizing the different functions of anterior and
posterior hippocampus. One theory associates anterior hippocampal
activity with novelty processing and more posterior regions with
recollection (Daselaar et al., 2006; Strange et al., 1999). This theory is
clearly consistent with our reported results finding that the anterior
hippocampus was sensitive to stimulus novelty and the posterior to
memory based categorization. An alternative view is that the anterior
hippocampus is associated with relational encoding (Chua et al.,
2007) and flexible use of relational information, whereas posterior
regions are more concerned with reinstatement of the context within
which the stimulus was originally encountered (Giovanello et al.,
2009). This theory is also compatible with our results. When
encountering a novel stimulus in a categorization task subjects are
required to not only encode the stimulus itself but in addition to set up
arelational memory between the stimulus and the category it belongs
to. During memory based categorization of repeated items, subjects
need to recall the situation in which the stimulus was previously
encountered in order to retrieve its category membership from
memory.

Interactions between basal ganglia, hippocampus, and dopaminergic
midbrain

We found a clear interaction between dorsal striatal regions, in
which the putamen exerts influence on the anterior caudate, which in

turn exerts influence on the posterior caudate. This is the third study
from our lab to identify this pattern, indicating that it holds across
different types of stimuli (abstract fractals, faces and houses) and
different stimulus-response contingencies (all deterministic in the
present work, deterministic and random in Seger et al., 2010, and
probabilistic and random in Lopez-Paniagua and Seger). This pattern
largely follows the order in which we expect the different corticos-
triatal loops to be of primary importance within categorization trials:
stimulus categorization and motor response selection occur first,
which should require the visual and motor loops (including the
putamen), then are followed by feedback processing, which requires
the executive loop through the anterior caudate nucleus. One puzzling
pattern in our data is that the anterior caudate exerts influence on the
posterior caudate, whereas the reverse should be true because visual
processing recruiting the posterior caudate precedes feedback
processing recruiting the anterior caudate. This may be due to the
location of our posterior caudate seed region in a relatively anterior
location within in the body of the caudate that may be strongly
influenced by the executive loop; in previous studies the body of the
caudate has exhibited characteristics of both the head and tail regions,
consistent with its intermediate anatomical position (Lopez-Paniagua
and Seger, (in press); Seger et al., 2010). The patterns of influence we
found are not in accordance with the primary anatomical interactions
within the striatum (Haber, 2003), which proceed along a gradient
from the most ventral, anterior, and medial regions (primarily ventral
striatum) to the most dorsal, posterior, and lateral regions (primarily
posterior putamen and tail of the caudate nucleus). However,
there are a number of additional anatomical connections between
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corticostriatal loops that do not follow this gradient that may underlie
these patterns of influence (see Lopez-Paniagua and Seger, (in press),
for a more detailed discussion of these issues).

The present study elicited robust hippocampal activity in two
regions (anterior and posterior), which allowed us to examine how the
medial temporal lobe interacts with the basal ganglia. The posterior
hippocampus received directed influence from the putamen, and
exerted directed influence on the anterior and posterior caudate. This
indicates it may be playing an intermediate role in categorization:

Midbrain

Fig. 9. Summary of directed influences between putamen, anterior and posterior
caudate, posterior hippocampus, and brainstem.

processing information about the stimulus and information about the
response from putamen, and sending the resulting information to the
anterior caudate to be integrated there with feedback. The directed
influences from putamen to hippocampus may serve as input to the
relational processing functions of the hippocampus. Relational proces-
sing may be of use in categorization in two ways: first, during encoding
to bind together features e.g., the stimulus and the response options
during categorization), and second at retrieval to reconstruct full
memories on the basis of features (e.g., using the stimulus to recall the
associated response). Finally, directed influence from the hippocampus
to the caudate is consistent with integration of retrieved memories with
the feedback received on each trial. It is not possible from the current
data, however, to determine whether the participation of the hippo-
campus in this network contributes to categorization learning; it is
possible that the hippocampus subserves conscious recollection of the
stimulus that is independent of effective categorization.

As described in the Results section, there was no consistent pattern
of directed influence from the anterior hippocampal seed regions. This
is consistent with our finding that this region was not clearly
associated with categorization, and appeared to be primarily sensitive
to stimulus novelty. It is important to note that directed influences
identified by GCM do not necessarily reflect anatomically direct
connections; they may pass through or be mediated by additional
regions. Previous research (Poldrack and Rodriguez, 2004; Graham
et al,, 2009) has found that the interactions between hippocampus
and basal ganglia are mediated by the prefrontal cortex.

In addition, we found directed influence from the midbrain to both
the hippocampus and the striatum, consistent with the known
projections of dopaminergic neurons from the ventral tegmental area
and substantia nigra. Dopamine neurons code for reward (firing rates
are greatest when an unexpected reward is encountered), and provide a
teaching signal to enable learning about reward contingencies. In both
basal ganglia and hippocampus, dopamine affects learning via NMDA
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receptors. In the basal ganglia, synaptic plasticity requires the presence
of dopamine (Reynolds and Wickens, 2002), whereas in the hippo-
campus encoding occurs in the absence of dopamine, but dopamine
increases the persistence of memories (Diizel et al., 2010; Bethus et al.,
2010). Dopamine projections from the midbrain may also play a role in
the anterior hippocampal sensitivity to novelty. In addition to reward
coding, dopamine neurons increase their firing rates for novel stimuli
(Kakade and Dayan, 2002). Electrophysiological studies (Axmacher
et al,, 2010) of the hippocampus have found both early (187 ms) and
later (482 ms) novelty effects; the former may contribute to initial
identification of a stimulus as novel and serve as one of the inputs
affecting dopamine neurons, and the latter may be a response to the
dopamine signal and underlie stronger memory encoding for novel
stimuli (Lisman and Grace, 2005).

Conclusions

We found that categorization learning recruits multiple learning
systems, including the basal ganglia and hippocampus, and that these
systems are associated with different subjective states. The basal
ganglia are associated both with high confidence, automatic perfor-
mance and with lower confidence intuitive performance. The
hippocampus can play multiple roles in categorization. When a
memory strategy is useful, posterior regions can be recruited, and are
associated with a subjective sense of remembering. In addition, the
anterior hippocampus can play a role in processing novel stimuli,
which may be particularly important when there are many stimuli
and/or the stimuli are complex. Subjective measures may be of use in
future research to identify when different memory systems are being
employed within complex tasks.
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Appendix

Full descriptions of each judgment type given to subjects in the
Instructions.

Know-Automatic, referred to in the instructions as a Type ‘A’
response:

“Is made when you know the information so well that you do not
have to think about the answer. You are able to categorize the
picture automatically. For example, most adults know their ABCs so
well that reciting them is automatic. Bicycling and driving can also
feel automatic after years of practice. In this study, it might feel like
you know that the stimulus predicts rain or sun the instant you see
it. It might feel like your fingers have made the correct response
before you have even thought about the stimulus. If you find
yourself searching your memory for the correct response, or
needed time to consider your response, then you should choose
type Bor C.”

Recollection, referred to in the instructions as a Type ‘B’ response:

“Is made when you can consciously recollect when and how you
learned the information. For example, when the picture appears
you may remember that it predicted rain (or sun) because you
remember seeing it, the response you made, and/or the feedback
you received. You may also recall other aspects of the last time
you saw the picture—perhaps a feature in the picture reminded

you of rain (or sun). You should choose this response when you
remember things associated with seeing the picture on a previous
trial and using that memory to make your response. Sometimes
memories are accompanied by emotion, such as remembering
how you felt if you answered incorrectly on a previous trial.
Sometimes memories are accompanied by details of the experi-
ence. You might remember that part of the picture made you
think about something outside of the experiment, or remember
hearing a noise from the hallway, or you remember feeling a cold
draft.”

Know-Intuition, referred to in the instructions as a Type ‘C
response:

“Is made when you have a feeling or belief that you know the
answer but you don't actually remember it. For example, you may
know or have a feeling or “gut instinct” that the picture predicts
rain. You may have an impulse to press one of the response keys.
You may feel that you answer was right or wrong though you
don't know why you feel that way. You should choose this
response if you have some sense about what the correct answer is,
but it isn't an automatic, quick response (in this case you would
choose ‘A’), or based on your conscious memory of a previous trial
(in this case you would answer ‘B’). However, if you have no sense
of what that response should be or whether you are right or
wrong, then you should choose type D.”

Guess, referred to in the instructions as a Type ‘D’ response:

“Is made when you have no idea about what the correct answer
is; you are guessing.”
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